The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia
نویسندگان
چکیده
Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world’s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo 0, 1.53 x Keywords—Biodegradation, lignin, Phanerochaete Chrysosporium, SSF, Water Hyacinth, Bioethanol
منابع مشابه
The Effect of pH on Simultaneous Saccharification and Fermentation Process of Water Hyacinth (Eichhornia crassipes (Mart.) Solms.) Using Trichoderma harzianum and Saccharomyces cerevisiae
Research has been done on simultaneous saccharification and fermentation of water hyacinth (Eichhornia crassipes (Mart.) Solms.) with different pH to produce bioethanol. Simultaneous saccharification and fermentation process was the integration between saccharification or hydrolysis of cellulose into sugar and fermentation of sugar into ethanol, with utilized microorganism of Trichoderma harzia...
متن کاملBiodegradation of Lignocellulosic Residues of Water Hyacinth (Eichhornia crassipes) and Response Surface Methodological Approach to Optimize Bioethanol Production Using Fermenting Yeast Pachysolen tannophilus NRRL Y-2460
The objective of this research was to investigate biodegradation of water hyacinth (Eichhornia crassipes) to produce bioethanol using dilute-acid pretreatment (1% sulfuric acid) results in high hemicellulose decomposition and using yeast (Pachysolen tannophilus) as bioethanol producing strain. A maximum ethanol yield of 1.14g/L with coefficient, 0.24g g; productivity, 0.015g lh was comparable t...
متن کاملEnhanced acid hydrolysis for bioethanol production from water hyacinth (Eichhornia crassipes) using fermentating yeast Candida intermedia NRRL Y-981
This study presents bioconversion of water hyacinth (Eichhornia crassipes) to bioethanol using two-sequential steps of acid hydrolysis (10% sulfuric acid) and yeast (Candida intermedia) fermentation. Maximum ethanol yield co-efficient was comparable to those obtained through enzymatic saccharification and fermentation of acid hydrolysate using fully equipped fermentor. A maximum ethanol yield (...
متن کاملOptimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process
Water hyacinth was used as substrate for bioethanol production in the present study. Combination of acid pretreatment and enzymatic hydrolysis was the most effective process for sugar production that resulted in the production of 402.93 mg reducing sugar at optimal condition. A regression model was built to optimize the fermentation factors according to response surface method in saccharificati...
متن کاملMicrowave Pretreatment of Fresh Water Hyacinth (Eichhornia Crassipes) in Batch Anaerobic Digestion Tank (RESEARCH NOTE)
The purpose of the research was to study the effect of microwave power inpretreatment of fresh waterhyacinth on biogas production. The variations of microwave power levels are 240; 400; 560 and 800 W. The variations of microwave heating time are 5; 7 and 9 min. The unpretreated fresh water hyacinth are used as control. The result of research showed that the microwave pretreatment of fresh water...
متن کامل